Gene Expression Profiling Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient Cohorts

D. Neil Hayes, Stefano Monti, Giovanni Parmigiani, C. Blake Gilks, Katsuhiro Naoki, Arindam Bhattacharjee, Mark A. Socinski, Charles Perou, and Matthew Meyerson

ABSTRACT

Purpose
Published reports suggest that DNA microarrays identify clinically meaningful subtypes of lung adenocarcinomas not recognizable by other routine tests. This report is an investigation of the reproducibility of the reported tumor subtypes.

Methods
Three independent cohorts of patients with lung cancer were evaluated using a variety of DNA microarray assays. Using the integrative correlations method, a subset of genes was selected, the reliability of which was acceptable across the different DNA microarray platforms. Tumor subtypes were selected using consensus clustering and genes distinguishing subtypes were identified using the weighted difference statistic. Gene lists were compared across cohorts using centroids and gene set enrichment analysis.

Results
Cohorts of 31, 72, and 128 adenocarcinomas were generated for a total of 231 microarrays, each with 2,553 reliable genes. Three adenocarcinoma subtypes were identified in each cohort. These were named bronchioid, squamoid, and magnoid according to their respective correlations with gene expression patterns from histologically defined bronchioalveolar carcinoma, squamous cell carcinoma, and large-cell carcinoma. Tumor subtypes were distinguishable by many hundreds of genes, and lists generated in one cohort were predictive of tumor subtypes in the two other cohorts. Tumor subtypes correlated with clinically relevant covariates, including stage-specific survival and metastatic pattern. Most notably, bronchioid tumors were correlated with improved survival in early-stage disease, whereas squamoid tumors were associated with better survival in advanced disease.

Conclusion
DNA microarray analysis of lung adenocarcinomas identified reproducible tumor subtypes which differ significantly in clinically important behaviors such as stage-specific survival.

J Clin Oncol 24:5079-5090. © 2006 by American Society of Clinical Oncology

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide. Although a useful term for epidemiologic purposes, lung cancer does not refer to a specific disease, but rather represents a heterogeneous collection of tumors of the lung, bronchus, and pleura. In clinical practice, however, most patients are designated to either the specific histologic diagnosis of small-cell lung carcinoma (SCLC) or the diagnosis of exclusion, non–small-cell lung carcinoma (NSCLC). The distinction, although crude, is useful due to striking differences in disease behavior and response to treatment. The subclassification of the nonspecific diagnosis NSCLC for 80% of lung cancer patients is essential when viewed in light of the push toward targeted cancer therapy. The major histologic subtypes of NSCLC include adenocarcinomas (the most common form of lung cancer), squamous cell lung carcinomas (SQ), and large-cell lung carcinomas (LCLC).

Within the category of adenocarcinoma of the lung, expert panels have recognized a number of subtypes and histologic variants. Most notably, the WHO’s most recent edition of the Histologic Typing of Lung and Pleural Tumors describes no fewer than 13 diagnostic classifications. With the exception of the tumor subtypes bronchioalveolar carcinoma (BAC) and adenocarcinoma with BAC features and their associated mutations of the epidermal growth
factor (EGFR) gene, histologic subtypes and molecular markers have had little impact on clinical practice for NSCLC, with treatment based primarily on clinical stage. Histologic subtypes have demonstrated interobserver variability too high for integration into routine practice, although the new WHO classification scheme offers promise for more reproducible diagnosis. In response to the need to develop useful tumor subtypes, researchers have turned to high-throughput screening assays such as DNA microarrays. These tools allow investigators to measure thousands of potential biomarkers for a given patient or cohort of patients in a single assay. Two types of screening methods exist: either an exploration of genes associated with a specific outcome (ie, survival), or a global survey to eliciting dominant patterns of gene expression without regard to a specific outcome, called clustering. When tumors cluster, they share a common biologic base, such as a genetic mutation. In a dramatic example, dominant gene expression patterns have emerged that would allow confident identification of adenocarcinoma.45 The state of consensus on their number and nature, and how they might be reidentified is formidable. There is no consensus on the number of subgroups, with investigators reporting between two and more than six subtypes of adenocarcinomas. Furthermore, in the few cases where genes defining subgroups have been reported, the concordance across studies approaches 0%. Although clinical, molecular, and morphologic characteristics have been reported to vary by subtype, no association has emerged that would allow confident identification of adenocarcinoma subtypes in new data or mapping of subtypes across different studies. In summary, although lung cancer subtypes seem to exist, there is little consensus on their number and nature, and how they might be reidentified in a prospective manner. In our current work, we do not propose to repeat individual clustering analyses reported previously, but rather to build on the collective body of work. We hypothesize that through the use of a standardized and systematic method, clearly identifiable subtypes of lung adenocarcinoma can be demonstrated in multiple independent clinical patient cohorts. We propose that the reproducibility constitutes a validation of these tumor subtypes and we provide the means for future investigators to identify these clinically relevant tumor subtypes in a platform-independent manner.

METHODS

Tumor Samples

Multiple lung carcinoma microarray datasets have reported tumor subtypes, but direct comparisons of gene expression profiling studies have not been reported. Therefore, we examined the three largest of these studies from the investigators at the University of Michigan (Michigan; Ann Arbor, MI), Stanford University (Stanford; Stanford, CA), and the Dana-Farber Cancer Institute (Dana-Farber; Boston, MA) reporting subtypes of lung adenocarcinoma as defined by expression profiling, and performed a coordinated analysis. Although the tumor of primary interest in the analysis was adenocarcinoma, other tumor and normal tissues were represented in these arrays, including normal lung (NL), SQ, SCLC, LCLC. Adenocarcinomas with the following characteristics were excluded because they were not universally represented across datasets: lymph node metastases of primary tumors, intrapulmonary metastases, distant metastases, and suspected colorectal metastases. Tumor morphologic type, including BAC status, was determined at the sponsoring institution for each dataset. It is not possible in these data to distinguish samples with pure BAC from those that might better be described as adenocarcinoma with BAC features. Construction of the histologically comparable cohort as well as links to all phenotype data on all samples is documented in the Supplementary Data (available online at http://www.jco.org).

Microarray Data Analysis

The following microarray platforms were used: Michigan, Affymetrix hu6800 GeneChip (Santa Clara, CA); Dana-Farber, 95av2 GeneChip (Affymetrix GeneChip); and Stanford, printed cDNA array using the IMAGE clone set (printed at Standford University, Stanford, CA; IMAGE clone set, Livermore, CA). All arrays were screened for quality by standard methods and experiments not meeting objectively defined quality thresholds were excluded. Quality screening is described in detail, including accounting of all excluded samples, in the Supplementary Data. Gene expression was computed for the oligonucleotide arrays using the robust multichip averaging method, whereas the Stanford Microarray Database Server (SMD) provided expression values for the cDNA arrays. Arrays from the SMD server were processed as in the original report of the data. To normalize gene expression for cross-platform comparisons, all genes were mean-centered within each sample set.14,48 Unigene cluster identifiers were used to match the probes and probe sets to their representative genes.49 Genes present on all three array formats were evaluated for cross-platform reliability using the unbiased method of integrative correlations (ICs).18,50 Genes with IC coefficients exceeding 2 standard deviations above that expected by chance were considered reliable and used for additional analysis. Links to both raw and processed datasets are available in the Supplementary Data.

Robust clusters or tumor subtypes were selected in a standardized manner independently for each dataset (Fig 1). We used the consensus clustering method, which incorporates average linkage agglomerative hierarchical clustering using a widely accepted distance measure, 1 – (Pearson’s correlation coefficient). Confirmation of the optimal clustering assignments was by the independent clustering method, nonnegative matrix factorization, proposed by Brunet et al.52 Having assigned all adenocarcinoma samples to their respective consensus clusters, we characterized the groups using the centroid method developed by Sorlie et al (see Appendix; online only).14 Centroids were prepared for the following groups of samples: each adenocarcinoma consensus cluster subtype within the three cohorts, NL, SCLC, SQ, LCLC, and BAC. When a histologic group was present in multiple sample sets (such as NL), a separate centroid was prepared for each dataset in which it appeared. The NL, SQ, SCLC, LCLC, and BAC centroids were used as common references across platforms. Hierarchical agglomerative clustering and probabilistic clustering were used to detect correlations between centroids using the same distance measure as above.

Subtype Gene Lists

Lists of genes most closely associated with the adenocarcinoma clusters were generated using the statistical analysis of microarrays method (SAM; see Appendix).53 SAM parameters were set to select genes associated with the subclasses in the one versus all, and all pair-wise comparisons, with a fixed false discovery rate (FDR) of 0.1%. If no genes were selected at an FDR of 0.1%, the criterion was relaxed iteratively until at least 10 genes were selected, with the algorithm recording the FDR at which the target was finally reached. In cases requiring relaxing the FDR, the degree of adjustment was...
suggested automatically by the delta statistic of the SAM algorithm. The result of this FDR adjustment strategy was that in cases where only a few genes are selected, the FDR was generally low. In cases of sparse data, however, the outcome occasionally was the selection of a large number of genes with a high FDR. Gene lists generated in this way were compared across datasets both in terms of their expected concordance and by the nonparametric methodology known as Gene Set Enrichment Analysis (GSEA; see Appendix). Consensus clustering and GSEA were implemented through GenePattern version 1.3.1 (Cambridge, MA), whereas hazard ratios were calculated using the statistical package SPSS version 11.0.1 (SPSS Inc, Chicago, IL). All other analyses and graphs were performed using the R statistical programming language version 1.9.0 (Vienna, Austria) and Bioconductor version 1.4 (Seattle, WA).

RESULTS

Demographic and Sample Characteristics

After exclusion of ineligible patients and array-based quality filtering, 31 Stanford, 72 Michigan, and 128 Dana-Farber adeno-carcinomas were available for analysis. Examination of the available clinical covariates demonstrated the cohorts to be of a similar composition overall, although missing data precluded a thorough evaluation of the Stanford samples (Table 1). The distribution of age, smoking, sex, and BAC was remarkably similar for the Dana-Farber and Michigan cohorts. There was a trend toward a difference in stage distribution, with 79% of Michigan versus 69% of Dana-Farber samples with stage I or II disease \((P = .12)\). Similarly, \(K\)-ras mutants were more common in the Michigan group (46% vs 34%; \(P = .10)\). The most striking difference between the Michigan and Dana-Farber samples was the percentage of well-differentiated tumors (28% vs 14%; \(P = .02)\). Also differing by cohort was the strategy by which adenocarcinoma samples were assigned to a subtype in the initial reports of the data. For example, in the Michigan scheme, every patient was slotted to one of three subtypes, whereas the Dana-Farber and Stanford groups left many samples unassigned. Similarly investigators differed in criteria for tumor inclusion in their respective studies. For example, to enrich for tumor-specific RNA, Michigan samples were selected to contain more than 70% tumor nuclei and exclude extensive fibrosis and inflammation. In contrast, the Dana-Farber set included samples with a minimum of 30% tumor nuclei, with estimated percentage tumor recorded in most cases. The difference in inclusion criteria introduces the possibility that clinically and biologically meaningful differences in the cohorts may have been introduced because approximately half of Dana-Farber tumors were composed of samples with less than 70% tumor nuclei. Selection of samples by percent tumor nuclei appears likely to account
for differences in tumor grade seen between the cohorts (see Supplementary Data).

Gene Selection

The majority of excluded genes were ineligible because of absence on one or more of the three array platforms. An additional 40% of genes were discarded after being flagged as poorly measured by the SMD server. Of the remaining 2,848 genes, 90% (2,553) were reliable by the IC method and were used for additional analysis. A flow chart is provided in the Supplementary Data to document reasons for gene inclusion/exclusion in the current study.

Table 1. Patient Demographics and Tumor Characteristics by Data Source

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Stanford University</th>
<th>University of Michigan</th>
<th>Dana-Farber Cancer Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>31</td>
<td>72</td>
<td>128</td>
</tr>
<tr>
<td>Sex†</td>
<td>Male</td>
<td>NA</td>
<td>30</td>
</tr>
<tr>
<td>Female</td>
<td>NA</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>Median age, years</td>
<td>NA</td>
<td>63.3</td>
<td>64.1</td>
</tr>
<tr>
<td>Bronchoalveolar histology</td>
<td>NA</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>NA</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Smoking < 10 years</td>
<td>NA</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Stage‡</td>
<td>Ia</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>lb</td>
<td>4 (2)†</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Ila</td>
<td>1 (1)†</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>llb</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>llb</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>9 (2)†</td>
<td>3</td>
</tr>
<tr>
<td>Differentiation*</td>
<td>Well</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>14</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>11</td>
<td>42</td>
</tr>
<tr>
<td>EGFR mutation*</td>
<td>NA</td>
<td>NA</td>
<td>14 of 114</td>
</tr>
<tr>
<td>K-ras mutation*</td>
<td>NA</td>
<td>NA</td>
<td>14 of 114</td>
</tr>
<tr>
<td>Published No. of adenocarcinoma clusters†</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Clusters names and No. assigned to each as presented in original published reports§	A1 = 15	1 = 17	C1 = 10
A2 = 6	2 = 35	C2 = 12	
A3 = 5	3 = 20	C3 = 15	
Unnamed cluster associated with large-cell adenocarcinoma = 5	All samples assigned to a cluster	Unnamed = 76	

<table>
<thead>
<tr>
<th>Inclusion/exclusion criteria</th>
<th>Histology</th>
<th>Tumor % criteria</th>
<th>Necrosis criteria</th>
<th>Fibrosis and inflammation</th>
<th>Tissue source</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No restriction, any available lung tumor</td>
<td>Only adenocarcinoma, no adenosquamous, squamous, or other histology</td>
<td>70% minimum</td>
<td>NA</td>
<td>“Extensive” fibrosis and inflammation excluded</td>
<td>Tumor bank</td>
<td>Stage I patients, resection and intrathoracic nodal sampling and no other treatments; stage III patients received surgical resection plus chemotherapy and radiotherapy</td>
</tr>
<tr>
<td>No restriction, any available lung tumor</td>
<td>30%, tumor minimum, verified by 2 pathologists</td>
<td>NA</td>
<td>NA</td>
<td>Fibrosis and inflammation allowed</td>
<td>Single institution</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not available.

†Numbers do not sum to total because of missing data.

‡Value in parentheses indicates number of samples missing survival data.

§Number of subtypes reported in the original published reports.

§There is no implied association by row order. For example, A1, 1, and C1 are not assumed to represent the same cluster.

Consensus Clustering: Identification of Bronchioid, Squamoid, and Magnoid Adenocarcinoma Subtypes

The identification of adenocarcinoma subtypes by hierarchical consensus clustering is shown in Figure 1, with three tumor subtypes suggested as optimum in each of the three cohorts. The choice of three clusters was confirmed using nonnegative matrix factorization–based consensus clustering (see Supplementary Data). Accordingly, within each cohort every sample was assigned exclusively to one of three subtypes defined by the consensus clusters. The nine centroids generated in this manner (one for each subtype in each dataset), as well as the ten...
reference centroids (three NL, two SQ, two SCLC, one LCLC, and two BAC), were evaluated for their pair-wise correlations across the 2,553 reliable genes using hierarchical agglomerative clustering (Fig 2). All centroids of similar histology, including NL, SQ, SCLC, and BAC, each derived from a different data source and array platform, demonstrate high correlation in the branched dendrogram. Similarly, adenocarcinoma subtype centroids demonstrate a strong cross-platform pattern of correlation in the following manner. Each dataset contributed one centroid to a dendrogram branch associated with the BAC centroids, thereby suggesting the cluster name bronchioid. Similarly, each dataset contributed a squamoid adenocarcinoma centroid to a dendrogram branch highly correlated with a SQ centroid. The remaining three adenocarcinoma centroids correlated best with the LCLC, offering the remaining centroid name of magnoid (from the Latin *magnus*, meaning “large”), although we note that the Michigan-derived centroid had an overall lower correlation. The results of tumor subtyping by consensus clustering were compared with results proposed in the original reports of these data in the Supplementary Data. The mapping of consensus clusters to those originally reported documents clear concordance in every case; it also highlights complex idiosyncrasies that impede a direct comparison of nonstandardized clustering.

Clinical and Biologic Correlates of Adenocarcinoma Subtypes

The adenocarcinoma subtypes were characterized by the available clinical and phenotypic data (Table 2). The subtype prevalence was similar across cohorts, with bronchioid and squamoid tumors comprising each around 33% to 52% of samples; the magnoid type comprised a minority at 10% to 26%. The percent tumor nuclei by subtype was highest in the bronchioid group and lowest in the squamoid group. In all three datasets, the squamoid subtype contained a higher percentage of poorly differentiated tumors than the bronchioid adenocarcinomas. Figure 2 suggests by the branch lengths of the dendrogram that the squamoid and magnoid clusters are more closely related to each other than either is to the bronchioid cluster. It is likely that this relationship is at least in part related to the properties they share of overall higher tumor grade and lower percentage tumor nuclei.

Adenocarcinoma subtype did not correlate clearly with stage in any of the datasets. All but one tumor with mucin was found in the bronchioid cluster. Clear cell histology was noted in four samples, none of which were of the bronchioid subtype. Interestingly, there was an over-representation of females, nonsmokers, and BAC histology in the bronchioid relative to the squamoid adenocarcinomas. Of all samples with any BAC histologic features reported in the pathologist’s description, 75% fell within the bronchioid cluster. Accordingly, the highest percentage of epidermal growth factor receptor (*EGFR*) mutations was found in the bronchioid subtype (15%), with only one of 33 magnoid samples having an *EGFR* mutation. The single mutation found in the magnoid subgroup occurred in an extracellular domain of the gene not associated with responsiveness to EGFR inhibitors (unpublished data). Although the χ^2 P value failed to meet statistical testing for a difference in proportion of *EGFR* mutation by tumor subtype ($P = .21$), a trend was noted for the comparison of bronchioid versus magnoid ($P = .08$). Moreover, although not statistically significant, increased frequency of mutated K-ras was noted in the squamoid subtype relative to the bronchioid (30% v 37%; $P = .3$).

Kaplan-Meier curves were generated to assess differences in survival by adenocarcinoma subtype (Fig 3). Only the Dana-Farber group had sufficient follow-up and numbers of events to calculate curves for stage I and II patients. In these patients, the squamoid and magnoid subtypes demonstrated significantly shorter survival.
compared with the bronchioid tumors, with hazard ratios (HRs) of 3.6 ($P = .01$) and HR 3.0 ($P = .04$), respectively. After stratifying by stage, we evaluated all clinical covariates available in these data by multivariate Cox proportional hazards modeling for association with survival, including age, differentiation, sex, smoking status, BAC histology, K-ras mutations status, and $EGFR$ mutation status. In both the univariate and multivariate analysis, only tumor subtype, age, and differentiation were significantly associated with survival. Strikingly, in advanced and nonsurgical disease (stages III and IV), the survival advantage is reversed with a trend toward improved survival compared with the bronchioid samples (HR, 2.7; $P = .06$ and HR, 2.2; $P = .16$, respectively).

Incidence and site of distant recurrence were available for early-stage tumors from the Dana-Farber cohort. Of 74 patients with stage I disease, 28 patients (38%) had a recurrence reported in the study period. Both the pattern and rate of recurrence varied by tumor subtype, however, with 27% of patients with bronchioid, 61% of patients with squamoid, and 37% of patients with magnoid subtypes reporting a recurrence ($P = .04$). Interestingly, five of six patients with bronchioid tumors and distant metastases reported bone involvement, representing 63% of all bone recurrences in these data. Finally, five of nine patients with squamoid tumors and distant metastases reported brain involvement, representing 71% of all brain recurrences.

Genes Associated With Subtypes

For each dataset, all possible one group versus all groups, and all pair-wise comparisons were evaluated by the SAM methodology, generating the 36 gene lists described in Table 3. The genes corresponding
to each cell of the table are available in the Supplementary Data. Of the 2,553 reliable genes, 1,066 (42%) were selected by SAM at least once. As expected, the number of differentially expressed genes correlated with the numbers of patients in the cohort. Of interest, considerably fewer genes per hypothesis tested were identified in the Stanford group even after accounting for cohort size; this result probably reflects technical features of gene expression measurement in the Stanford microarray platform. Gene lists derived from the Michigan data were comparable in length to those from the Dana-Farber group, with the exception of those for the magnoid subtype, which were shortened and had higher FDRs.

The SAM-generated lists were examined for concordance (Table 4). In 28 of 36 comparisons, the concordance across gene lists was greater than expected by chance. Of those for which concordance was not greater than expected by chance, five of eight involved the Michigan magnoid subtype, which were shortened and had higher FDRs.

The SAM-generated lists were examined for concordance (Table 4). In 28 of 36 comparisons, the concordance across gene lists was greater than expected by chance. Of those for which concordance was not greater than expected by chance, five of eight involved the Michigan magnoid subtype. GSEA was performed to test the statistical significance of SAM-generated gene lists as independent predictors of tumor subtypes across studies (Table 5). Of the 72 gene lists validated, there was evidence supporting cross-platform validation in 59. Of the 13 lists that failed to validate by these criteria, nine involved the Michigan magnoid subtype, demonstrating its weak signature in these data.

Biologic Pathways of Tumor Subtypes

Although an explicit evaluation of the tumor subtype biology is outside the scope of this article, a brief consideration clearly is warranted (Table 6). Bronchioid tumors were dominated by a program of growth, development, differentiation, and survival genes. Defining genes of the squamoid tumors stem from a dramatically different set of tumor processes, including angiogenesis such as hypoxia-inducible factor-1-alpha, transforming growth factor beta pathway genes, and...
the WNT signaling cascade. Magnoid tumors demonstrate a pattern of gene expression associated with a distinct set of pathways, primarily inflammation, cytoskeleton, metabolism, and proliferation. In addition, of clinical interest we note that the three subtypes differ with respect to a number of putative markers of cancer chemotherapy and radiation treatment. Of particular note, the bronchioid subtype is associated with the majority of genes associated with cisplatin resistance. A more in-depth review of these genes is provided in the Supplementary Data.

DISCUSSION

The hypothesis tested for the first time in the current work is that lung adenocarcinoma subtypes defined by gene array analysis are reproducible and clinically relevant. The adenocarcinoma subtypes we report were identified in an unbiased, independent, and objective manner, and are distinct in cross-platform validation by correlation with expression patterns from recognized lung tumor histologic subtypes (BAC, LCLC, SQ, and SCC). Furthermore, reproducible subtypes can be identified through the use of centroids even in the absence of a gold standard reference such as a molecular marker or an a priori predictive gene list. Tumor subtypes were named according to overall similarity of gene expression patterns across hundreds or thousands of genes to easily recognizable morphologic lung cancer variants. This naming choice emphasizes the view that the tumor subtypes are not dependent on identification of a fixed set of genes, specific analytic method, or microarray platform, and allows future investigators to establish a common reference point lacking in this heterogeneous disease.

Most notably, the three independent datasets each produced clear pictures of the bronchioid and squamoid adenocarcinoma subtypes. With regard to their clinical features, bronchioid tumors were more likely to be from nonsmoking females with BAC histology and

| Table 3. Number of Genes Discriminating Adenocarcinoma Subtypes by Sample Source |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Subtype | Dana-Farber Cancer Institute | University of Michigan | Stanford University |
| No. of Genes | False Discovery Rate* | No. of Genes | False Discovery Rate | No. of Genes | False Discovery Rate |
| Bronchioid v all† | 323 | 0.003 | 265 | 0.001 | 14 | 0.014 |
| All v bronchioid‡ | 734 | 0.003 | 806 | 0.001 | 46 | 0.001 |
| Bronchioid v squamoid | 280 | 0.001 | 277 | 0.001 | 14 | 0.030 |
| Bronchioid v magnoid | 156 | 0.002 | 35 | 0.045 | 63 | 0.001 |
| Squamoid v all | 461 | 0.001 | 718 | 0.001 | 42 | 0.001 |
| All v squamoid | 189 | 0.001 | 228 | 0.001 | 19 | 0.297 |
| Squamoid v bronchioid | 654 | 0.001 | 797 | 0.001 | 55 | 0.001 |
| Squamoid v magnoid | 222 | 0.001 | 43 | 0.001 | 45 | 0.001 |
| Magnoid v all | 281 | 0.002 | 15 | 0.060 | 18 | 0.005 |
| All v magnoid | 120 | 0.001 | 123 | 0.639 | 74 | 0.001 |
| Magnoid v bronchioid | 448 | 0.002 | 91 | 0.001 | 16 | 0.009 |
| Magnoid v squamoid | 181 | 0.001 | 59 | 0.053 | 11 | 0.012 |

*See Methods.
†Can be interpreted as number of genes with increased expression in bronchioid relative to all other samples.
‡Can be interpreted as number of genes with decreased expression in bronchioid relative to all other samples.

| Table 4. Gene List Overlap by Sample Source and Cluster |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Subtype | Dana-Farber Cancer Institute/University of Michigan | Stanford University/Dana-Farber Cancer Institute | University of Michigan/Stanford University |
| Observed Count | Expected Count Due to Chance Alone | Observed Count | Expected Count Due to Chance Alone | Observed Count | Expected Count Due to Chance Alone |
| Bronchioid v all | 111 | 33 | 3 | 1 | 4 | 1 |
| All v bronchioid | 457 | 231 | 13 | 13 | 11 | 14 |
| Bronchioid v squamoid | 101 | 30 | 2 | 1 | 2 | 1 |
| Bronchioid v magnoid | 8 | 2 | 6 | 3 | 1 | 0 |
| Squamoid v all | 272 | 129 | 8 | 7 | 16 | 11 |
| All v squamoid | 58 | 16 | 3 | 1 | 0 | 1 |
| Squamoid v bronchioid | 413 | 197 | 7 | 13 | 18 | 17 |
| Squamoid v magnoid | 5 | 3 | 14 | 3 | 1 | 0 |
| Magnoid v all | 0 | 1 | 3 | 2 | 0 | 0 |
| All v magnoid | 5 | 5 | 11 | 3 | 5 | 3 |
| Magnoid v bronchioid | 28 | 16 | 3 | 2 | 0 | 0 |
| Magnoid v squamoid | 4 | 4 | 0 | 0 | 1 | 0 |
contain mutations of the EGRF gene. Patients with these tumors demonstrated significantly improved survival compared with other tumor subtypes in early-stage disease, but poorer survival in late-stage disease. Improved survival for early-stage bronchioid patients may be due to their lower rate of distant metastases compared with the other tumor subtypes. When bronchioid tumors did metastasize, the recurrence tended to occur in bone. Why bronchioid tumors might fare worse in advanced disease is unclear from these data, although genes

<table>
<thead>
<tr>
<th>Table 5. Gene Set Enrichment Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtype</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bronchioid v all</td>
</tr>
<tr>
<td>All v bronchioid</td>
</tr>
<tr>
<td>Bronchioid v squamoid</td>
</tr>
<tr>
<td>Bronchioid v magnoaid</td>
</tr>
<tr>
<td>Squamoid v all</td>
</tr>
<tr>
<td>All v squamoid</td>
</tr>
<tr>
<td>Bronchioid v bronchioid</td>
</tr>
<tr>
<td>Magnoaid v all</td>
</tr>
<tr>
<td>All v magnoaid</td>
</tr>
</tbody>
</table>

NOTE: The column heading names the dataset that generated the gene list, followed by the cohort in which the list was validated. The ES sign (+ or −) denotes the direction of correlation of the gene list with the tumor subtype distinction named in the row (see Methods and Appendix).

Abbreviation: ES, enrichment score.
*Evidence for validation, ES score positive, permutation P significant.
†Evidence for validation, ES score positive, permutation P trending toward significance (1 to 25).
‡Evidence against validation, ES score negative, permutation P not significant.
§Evidence against validation, ES score negative, permutation P significant.

<table>
<thead>
<tr>
<th>Table 6. Genes by Tumor Subtype and Biologic Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchioid</td>
</tr>
<tr>
<td>Growth, development, differentiation, and survival/antiapoptosis</td>
</tr>
<tr>
<td>Differentiation: retinoid X receptors (alpha, beta, and gamma), RARG, ABCA4, THRA, TRIP3</td>
</tr>
<tr>
<td>Growth and development: DLX4, IRX5, LHX2, CPD1, ARVC (velocardiofacial syndrome), PAX3 (Waardenburg’s syndrome 1), MSX2 (craniosynostosis), faciogenital dysplasia (Aarskog-Scott syndrome), RUNX2 (cerebrocranial dysplasia), UBE3A (Angelman syndrome)</td>
</tr>
<tr>
<td>ETS genes: CDX1, ET3V, ET4V, ELK1, FOS-like antigen 2</td>
</tr>
<tr>
<td>JAK/STAT and antiapoptosis genes: PK3K2, PIK3CD, STAT5B, IL6, CCND2 (decreased), p21 (decreased)</td>
</tr>
<tr>
<td>Extracellular matrix and matrix metalloproteinases: ST3GAL2, ST3GAL4, ALG3, CSPG4, MGAT3, SDC2, MMP15, MMP17, ADAMS11</td>
</tr>
<tr>
<td>Type II pneumocyte: MUC1, ABCA3</td>
</tr>
<tr>
<td>Cisplatin resistance, radiation, and DNA repair: ERCC2, XRCC1, XRCC5, WWP2, LIG3</td>
</tr>
<tr>
<td>Squamoid</td>
</tr>
<tr>
<td>WNT1-HDAC2,APC (decreased), MLL3, WNT5A, CCND2, ADAM9 and ADAM10, TFRC, BLMH</td>
</tr>
<tr>
<td>Angiogenesis: TCEB1, VHL (decreased), HIF1A, ATR, RPS6KA1, CREBBP</td>
</tr>
<tr>
<td>Squamous cell markers/differentiation: SART3, CKS1B, ERK3, ADAM9, CD24, CXCR4, PML (decreased), XB1P, SMAD1, SMAD2, SMAD4, BMPR, BMP6, ID1, ID2, ID3</td>
</tr>
<tr>
<td>Complement: CD55, CD46, and CD59</td>
</tr>
<tr>
<td>Zellweger’s syndrome: SCP2, PXMP3</td>
</tr>
<tr>
<td>Translation</td>
</tr>
<tr>
<td>RNA helicases: DEAD Box polypeptides 1, 5, 18, 21, and 48</td>
</tr>
<tr>
<td>RNA Polymerase II: TAF7, TAF9, SKP1A, GTF2F1</td>
</tr>
<tr>
<td>Chemotherapy targets: MTHFD2, MTHFD1, DTYMK, DCK, FOLR1, CYR61, BLMH, CLU (decreased), EHHX1, EPHX2</td>
</tr>
<tr>
<td>Magnoaid</td>
</tr>
<tr>
<td>Inflammatory genes: ILF3, TNFAIP2, PLAU, IRAK1, IL15RA, FGR2B, FGR3A, MCM3, ANXA1, IFI35, IFRD1</td>
</tr>
<tr>
<td>Cytoskeleton: TUBB5, PIK3CA, LIM1, ADD2, TROAP, TGFBI, CDKN2A, FLNA, TUBG1, TPM2, MAP4, SNTA1, EXOSC10, RSN, PDLIM4, ARPC1B, ARPC2, VIC, CKAP4, PLOD1, PLOD2, DAG1, ICAM1</td>
</tr>
<tr>
<td>Hematopoietic markers: MMD, HEM1</td>
</tr>
<tr>
<td>Lung/epithelial markers: DNAJA1, EMP3, MMP10, ACP4, FUS, E2H2, NME1, ST3GAL3, PRKCSH, ERCC3</td>
</tr>
<tr>
<td>Proliferation: MKI67 (Ki-67), PCNA, CBX3, EIF2S1, EIF5, EIF3S2</td>
</tr>
<tr>
<td>Genes associated with chemotherapy targets: FNTA, FDP5, TAP1TAP2, TYMS, TK1, TOP2A, TOPBP1</td>
</tr>
<tr>
<td>Neuroendocrine: ADM</td>
</tr>
</tbody>
</table>
defining the bronchioid subtype were more likely to be those corre-
lated with chemotherapy and radiation resistance. Bronchioid tumors
were of overall lower tumor grade, tended to demonstrate markers of
type II pneumocyte differentiation, and stain positively for mucin
production. In contrast, squamous tumors were more likely from
male smokers in tumors with K-ras mutation. Patients with squa-
moid tumors fared significantly worse that those with the bron-
chioid subtype in early-stage disease, but better in advanced disease.
The poor prognosis in earlier stages is likely due to a tendency to
metastasize early, including a higher likelihood of brain involvement.
Squamous adenocarcinomas were more likely to be moderately or
poorly differentiated and to be associated with genes most commonly
associated with squamous cell carcinoma. Gene list predictors of squa-
moid and bronchioid subtypes were generated independently for each
subtype in every cohort, and in every case these were validated by the
GSEA and centroid methodologies.

A third group, the magnoid subtype, was also selected in each of
the three independent cohorts by the objective method we describe.
Magent tumors were the most frequent, ranging from 10% in the
Michigan cohort to 26% in the Dana-Farber samples. One of the most
pronounced characteristics of the magnoid subtype was the strong
inflammatory signature. Presumably, because the exclusion criteria
for the Michigan cohort included significant numbers of inflamma-
tory cells, this would reduce the percentage of magmoid tumors in this
cohort. As a result, although all three cohorts detect the magmoid
cluster, both the gene expression and clinical profile are less dis-

tinct than for the bronchioid and squamous tumors, although the
overall poor prognosis of the group was statistically significant in
advanced disease.

The expression patterns defining the tumor subtypes presented
are not subtle statistical phenomena dependent on a handful of pre-
dictive genes. Forty percent of all reliable genes in the dataset were
predictive of at least one adenocarcinoma subtype using the criteria we
established in the Methods section. Amazingly, the expression signa-
ture extends beyond even these 1,066 genes selected by SAM. When all
genes selected as predictors of the tumor subtypes are excluded and the
current analysis repeated, we obtain essentially identical results (data
not shown). In other words, many genes failing to meet significance
testing will contribute signal to the tumor subtype identity by the
centroid method analysis.

By focusing on standardized and unbiased methods, we essen-
tially have excluded the possibility that adenocarcinoma subtypes are
the result of chance, noise, artifact, or analytic method. None of the
analytic parameters, including sample selection, gene selection, opti-
mal cluster number, and cluster assignment, were optimized with
regard to the study outcome. In each case, analytic methods were
based on a priori biologic and statistical considerations. Although
unrecognized technical artifacts can drive clustering patterns in a
single dataset, it is unlikely that similar effects would be present in
multiple cohorts using different assay platforms, as was the case here.
It is even less likely that spurious clusters would correlate with the
constellations of clinical features across three datasets in the manner
described in this study. In addition, our standardized analysis agreed
well with the previously published results, but also clarified the find-
ings for meaningful comparison that would not otherwise be possible.
Finally, we demonstrate the ability to evaluate tumor subtypes with
confidence and ease in a platform-independent manner, as we did
with the expression arrays from Duke and the tissue microarrays from
the University of British Columbia.

Although a specific discussion of genes and biologic pathways is
beyond the scope of this work, all of the data, including the lists of
genes associated with each of the subtypes, are available in the Supple-
mental Data. Regarding the cancer pathways associated with the
tumor subtypes, our results mirror those of the previously published
reports. The importance of tumor subtyping is clear even in the
absence of a complete biologic understanding. Tumor subtype is sug-
gested as a proxy for at least one important mutation (EGFR), with
none of the magnoids demonstrating the clinically meaningful find-
ing. It is likely that other important genomic events are conferred by
tumor subtype membership, including specific chromosomal abnor-
malities (results not shown).

The main focus of this analysis was the validation of adenocarcin-
oma subtypes derived from clustering of expression profiles. We
chose to validate three subtypes, given that this was the number sug-
gested by consensus clustering. It is striking that, in the face of what is
considered a heterogeneous tumor, three clusters emerged consist-
tently, suggesting that a molecular taxonomy could be proposed that
is simple, reproducible, and complementary to light microscopy alone.
We do not exclude the possibility that additional tumor subtypes
might be described if the sample set were larger or of a different
composition. A group of investigators funded under the National
Institutes of Health’s Directors Challenge Program recently has com-
pleted processing of several hundred new lung cancer expression ar-
rays. It is hoped that the validation of lung adenocarcinoma subtypes
in the current report in conjunction with these new data will expedite
more reliable classification of the heterogeneous group of tumors
currently known most frequently as NSCLC.

REFERENCES
1. Parkin DM: Global cancer statistics in the year
2. Travis WD, Sobin LH: Histological Typing of
Lung and Pleural Tumours (ed 3). New York, NY,
Springer-Verlag, 1999
Clinical report of the treatment of locally advanced
4. Meyerson M, Hayes DN: Microarray ap-
proaches to gene expression analysis, in Tsongalis
G, editor: Clinical applications of microarray
analysis and molecular pathology in human tumors.
5. Lynch TJ, Bell DW, Sordella R, et al: Activat-
ing mutations in the epidermal growth factor recep-
tor underlying responsiveness of non-small-cell lung
cancer to gefitinib. N Engl J Med 350:2129-2139,
2004
mutations in lung cancer. Correlation with clinical
response to gefitinib therapy. Science 304:1497-
1500, 2004
7. Chemotherapy in non-small cell lung cancer:
A meta-analysis using updated data on individual
patients from 52 randomised clinical trials: Non-
Small Cell Lung Cancer Collaborative Group. BMJ
311:899-909, 1995
Reproductibility of diagnosis and its influence on the
distribution of lung cancer by histologic type in
analysis of pulmonary adenocarcinoma sub-
classification with special consideration of papil-
lar and bronchioloalveolar types. Histopathology
45:468-476, 2004
Interobserver variability in histopathologic subtyping
and grading of pulmonary adenocarcinoma. Cancer
71:2971-2976, 1993
KS, et al: The accuracy of the histological classifica-
tion of lung carcinoma and its reproducibility: A
study of 75 archival cases of adenocarcinoma of
12. Meyerson M, Hayes DN: Microarray ap-
proaches to gene expression analysis, in Tsongalis
G, editor: Clinical applications of microarray
analysis and molecular pathology in human tumors.
13. Travis WD, Sobin LH: Histological Typing of
Lung and Pleural Tumours (ed 3). New York, NY,
Springer-Verlag, 1999
14. Meyerson M, Hayes DN: Microarray ap-
proaches to gene expression analysis, in Tsongalis
G, editor: Clinical applications of microarray
analysis and molecular pathology in human tumors.
15. Lynch TJ, Bell DW, Sordella R, et al: Activat-
ing mutations in the epidermal growth factor recep-
tor underlying responsiveness of non-small-cell lung
cancer to gefitinib. N Engl J Med 350:2129-2139,
2004
mutations in lung cancer. Correlation with clinical
response to gefitinib therapy. Science 304:1497-
1500, 2004
17. Chemotherapy in non-small cell lung cancer:
A meta-analysis using updated data on individual
patients from 52 randomised clinical trials: Non-
Small Cell Lung Cancer Collaborative Group. BMJ
311:899-909, 1995
Reproductibility of diagnosis and its influence on the
distribution of lung cancer by histologic type in
analysis of pulmonary adenocarcinoma sub-
classification with special consideration of papil-
lar and bronchioloalveolar types. Histopathology
45:468-476, 2004
Interobserver variability in histopathologic subtyping
and grading of pulmonary adenocarcinoma. Cancer
71:2971-2976, 1993
KS, et al: The accuracy of the histological classifica-
tion of lung carcinoma and its reproducibility: A
study of 75 archival cases of adenocarcinoma of
22. Meyerson M, Hayes DN: Microarray ap-
proaches to gene expression analysis, in Tsongalis
G, editor: Clinical applications of microarray
analysis and molecular pathology in human tumors.
Gene Expression Profiling for Lung Cancer

Acknowledgment

We thank David Beer, PhD, Cheng Li, PhD, Mitchell Garber, PhD, Anil Potti, MD, and Robert Gentleman, PhD, for their discussions and advice on this project.
Appendix

The Appendix is included in the full-text version of this article, available online at www.jco.org. It is not included in the PDF version (via Adobe® Reader®).

Authors’ Disclosures of Potential Conflicts of Interest

Although all authors completed the disclosure declaration, the following author or immediate family members indicated a financial interest. No conflict exists for drugs or devices used in a study if they are not being evaluated as part of the investigation. For a detailed description of the disclosure categories, or for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Employment</th>
<th>Leadership</th>
<th>Consultant</th>
<th>Stock</th>
<th>Honoraria</th>
<th>Research Funds</th>
<th>Testimony</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Meyerson</td>
<td></td>
<td></td>
<td>Novartis</td>
<td></td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author Contributions

Conception and design: D. Neil Hayes, Katsuhiko Naoki, Arindam Bhattacharjee, Matthew Meyerson
Financial support: Matthew Meyerson
Administrative support: Matthew Meyerson
Collection and assembly of data: D. Neil Hayes, C. Blake Gilks, Matthew Meyerson
Data analysis and interpretation: D. Neil Hayes, Stefano Monti, Giovanni Parmigiani, C. Blake Gilks, Katsuhiko Naoki, Arindam Bhattacharjee, Mark A. Socinski, Charles Perou, Matthew Meyerson
Manuscript writing: D. Neil Hayes, Stefano Monti, Giovanni Parmigiani, C. Blake Gilks, Katsuhiko Naoki, Mark A. Socinski, Charles Perou, Matthew Meyerson
Final approval of manuscript: D. Neil Hayes, Stefano Monti, Giovanni Parmigiani, Katsuhiko Naoki, Arindam Bhattacharjee, Mark A. Socinski, Charles Perou, Matthew Meyerson